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This paper reports on the numerical implementation of a convergent scheme solv-
ing a general class of nonlinear Boltzmann-like equations for reacting fluids. The
scheme is tested on a model of space-homogeneous multicomponent gas with bi-
nary chemical reactions. Although the model cannot be solved exactly, it provides
analytical expressions for certain low-order moments of the one-particle distribu-
tion functions. Computing these moments by applying the numerical scheme, one
obtains a good agreement with the values obtained analytically. An error analysis is
performed and error control considerations complete the theoretical support of the
scheme developed in previous workseg 2002 Elsevier Science
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1. INTRODUCTION

Accurate numerical modeling of nonlinear processes in dilute, reacting flows is critical
solving transport problems both in fundamental and applied science, e.g., in astrophy:
physics and chemistry of planetary atmospheres, technology of space vehicles, combus
chemical reactors, etc. In this respect, the past few years have been marked by conside
progress in the development of algorithms for Boltzmann models. Since there are m
excellent textbooks and well-documented papers, a review on this topic is beyond the s
of our work. From the multitude of papers, here we only mention a few successful rec
approaches to describing various reacting gas regimes: iterative linear Boltzmann trans
schemes [3], splitting algorithm for the BGK model with chemical reactions [11], lattic
BGK schemes for reacting fluids [16], and lattice gas automata methods [2]. A summ
of the literatures shows that the competitiveness of various methods is open and opin
are still divided.
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To avoid mathematical difficulties, in many situations where dilute reacting fluids a
(considered as) properly described by nonlinear Boltzmann models, the numerical sche
are actually applied to simplified reformulations of the models, e.g., obtained by linearizat
of the collision operators. Nevertheless, there are physical processes, such as far-fi
equilibrium kinetic stages, where a more realistic description has to take into account
effects of the nonlinearities of the Boltzmann collision operators.

As a result, there is increased interest [17] in precise numerical methods for nonlin
Boltzmann models (with unaltered collision operators) able to describe the complexity
phenomena specific to these type of equations.

In this respect, a rigorous numerical scheme has been recently introduced [7] to sol
general class of nonlinear Boltzmann-like equations [5, 6] for dilute chemically reactil
fluids. This scheme extends an efficient, so-called particle method, developed by Nambu
and Babovsky and lliner [1] (NBI), which combines analytical and stochastic techniqu
into a convergent algorithm for the classical Boltzmann equation (for the simple gas).

To extend the NBI method by including chemical reactions, one has to face new me
ematical difficulties, because of the presence of several species and threshold condi
in the energetic balance, which imply more complications in the structure of the collisi
operators, than for the simple gas. Since the collision operators are acting only on
velocity-dependent part of the one-particle distribution functions, these difficulties are
ready encountered in the treatment of the simpler, space-homogeneous reacting fluids
such fluids, the method considers a time-discretized version of the Boltzmann model (ke
ing the collision operators in their original forms) and introduces an iteration scheme t
converges, in some sense, to the solution of the Boltzmann equation, when the discretizz
time step decreases to zero. The main benefit is that, using the properties of the colli
operators, the method provides a weak form of the iteration, which can be solved exactl
the positive cone of discrete measures (defined on the velocity space, in our case). Appl
low-discrepancy techniques [9] to approximate (with arbitrary accuracy) the general init
data by means of discrete measures, the above analytic procedure results in a conve
scheme for the general solutions of the nonlinear Boltzmann equation. However, the r
linearities imply a power-like increasing computational effort at each iteration step. This
the stage when the stochastic element is invoked, its role being only to keep the nume
effort unchanged. Specifically, at each iteration step, one uses random selection to dimi
the number of points supporting the input discrete measure. The final algorithm is shc
to converge almost everywhere to the true solution of the Boltzmann equation, in gene
with a numerical effort of orde®©(nlogn), as a consequence of the law of large number
for arrays of random variables.

The generalization of this scheme to modeling space-dependent fluids seems ratt
technical problem [7] and should follow essentially the same procedure as in [1], alternat
convection steps with collision steps, in disjoint locally homogeneous space cells.

The potential advantage of the method is a more accurate calculation of the distribut
functions and implicitly of the macroscopic properties, evaluated by integrals (averag
of various physical quantities with respect to the measures defined by the distribut
functions.

Since most applications concern phenomena in nonhomogeneous fluids, the applical
of the method should be ultimately tested on those situations. However, this seems ra
a difficult task since, in those cases, neither sufficient experimental data nor analyt
solutions are available for confrontation with numerical results.
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Onthe other hand, by virtue of the above considerations, numerical experiments on sp
independent models with exact solutions can provide useful illustrations of the converge
of the method, error behavior, and robustness (having in mind the effects due to the pres
of reactive collision terms). Moreover, unlike the situation of a simple gas, the study o
space-homogeneous reacting fluid could present intrinsic interest in certain cases, w
one is led to dynamical systems with nontrivial behavior [12].

The scheme of [7] was tested in [13] on the exact Krook—Wu solutions [8] of the mul
component Boltzmann equation. Since the Krook—Wu equations refer only to nonreac
gases, the results have not clarified the applicability of the method to models with chem
reactions. Unfortunately, even in the space-independent case, the known exact solu
of nonlinear Boltzmann models with chemical reactions are too simple to be of inter
in testing the above scheme. However, indirect tests can be performed on certain mc
for space-homogeneous reacting fluids, which cannot be solved analytically, but proy
exactly solvable equations for the time evolution of certain macroscopic variables (e
concentration, energy). In this case, the macroscopic quantities calculated by mear
the numerical one-particle distribution functions (supplied by the scheme of [7]) can
compared with those obtained analytically.

The aim of this paper is to present the results of such an indirect test, which, altho
applied to a particular model, reveals the main features of the method. A detailed e
analysis is included and general error estimations are obtained completing the theore
developments of [7].

The implementation of the numerical method on the chosen model is performed inam
efficient way than in [13] owing to a slightly improved procedure. Roughly speaking, fi
each species, the number of concentration points of each discrete measure approxim
the one-patrticle distribution function is kept proportional to the concentration.

The paper is organized as follows. Section 2 introduces the specific kinetic equations
analysis. The equations describe a gaseous mixture of (at most) four species of parti
with one-state internal energy and binary nonreactive or/and reactive collisions. Sectic
details theoretical considerations concerning the application of the numerical scheme tc
equations introduced in Section 2. The numerical results of the tests and the error ana
are presented in Section 4. The last section is devoted to conclusions.

2. GAS MODEL WITH TWO KINDS OF CHEMICAL REACTIONS

In this paper we refer to a particular form of the model presented in [5, 6]. In detail, \
consider a space-homogeneous gas mixture, compodedpéciesXy, ..., Xy of point
particles with massn;, having one internal state characterized by a defined value of tl
internal energyE;, 1 <i < N. The gas particles undergo binary nonreactive collisions &
well as reactions induced by binary collisions

Xi+Xj = X+ X, 1<i,j,klI=<N. 1)

According to the model, reactions of the form (1) can occur only if the microscopic co
servation of mass, momentum, and energy is fulfilled; i.e.,

m; +mj = mg +m, (2

miv 4+ mjw = mgVv' + mw’, 3)
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m; |v|? m; w2 mi|Vv'|? m|w'[2
o+ E+ +E = + B+

+ Ei, (4)

wherev andw are the precollision velocities of the particieand j, andv’ andw’ are the
postcollision velocities of the particlésandl, respectively.

Following, e.g., [5], it can be easily seen that, in the spatially homogeneous case, the «
particle distribution functiond; = f;(t, v) describing the species4i < N, at moment
t > 0, are solutions of the system of equations

Sh=RO-SO, 1=i=N, ®)

with the gain and loss ternf3 andS given by

N

R()(t,v) = Z/ Priij (V. W, 1) fie(t, Vijia) fi (8 wij ) dwdn - (6)
j.k,I=1 Dij.k (V) xS
N
S, v) = fit,v) Z / Fisij (v, W, n) f; (t, w) dwdn. -
jkI=1 Dij (V) xS

In (5), (6), and (7),f:=(fy,..., fn), S:={neR®||n|=1}, and Dij.u(v) =
(weR3| (v,w) € Djj.ui}, where

Dijua = {(V, W) € R® x R® | Wij (v, W) > O}, (8)
with
~ ) m;m; 2
Wija(v,w) i = —|v—w|“"+E +E; —Ex— E 9
IJ,kl( ) 2(mi +mj)| | i j k | ( )
and
12
mv + m;w 2-m —
Vil = Vij-k (V, W, ) = Wij o (v, w n, (10
ij:kl Ij,kl( ) mi+mj |:mk(mi+mj) |],k|( )] ( )
m;Vv 4+ m;w 2-mg — 12
Wij ki = Wij ki (V, W, N) i= - [ Wij ki (v, W)] -n, (11)
N ! m; +m; my(m; +mj)

forall (v, w, n) € Djj.u x S. Further, the collision lawpy.i; (v, w, n) andry.i; (v, w, n) are
given, positive measurable functionsBr.. x S. They are proportional to the probability
of occurrence of reaction (1). Moreover,

Pwt:ij (V, W, N) = Pui:ji (W, V, N) = Prij (V, W, —n), (12)

Fatsij (V, W, N) = Tz i (W, V, N) = [ (V, W, —N), (13)

/ @V, W) Ptij (V, W, MY (Visij » Wiij) dv dw dn
Dijxi xS

=/ @ (Vij ki Wij k), Tijo (V, W, (v, wy dvdwdn, (14)
Dytij XS
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and

/ @V, W) (V, W, m)vr (Vki.ij , Wkisij) dv dwdn
Dijk xS
=/ @(Vij:ki» Wij:k)¥ (v, w) dvdwdn (15)
DKI:lJ><S

forall (¢, ¥) € C(R® x R®) x Cc(R® x R®) U Cc(R® x R®) x C(R? x R®). Here, as usual,
C(R® x R®) denotes the space of real continuous function®dx R andC.(R* x R?)
is the subspace @ (R® x R?) consisting of functions with compact support.

It is known [5] that, ifrij..(v,w,n) < C(1+ [v|?2 + |w|?) for some constanC > 0,
then the Cauchy problem associated with the system (5) has, in some sense, unique po
global solutionsf;(t) € LYR3 dv) —real, 1<i < N, provided that the initial data are
positive and their fourth-order momenta are well defined. In addition, the solutions sati
the global mass, momentum, and energy (kinetiaternal) conservation (for more details
the interested reader is referred to [5-7]).

For the numerical purposes of this paper, we apply the above considerations to a gas
mixture composed dil = 4 species. Only the following collisions (reactions) are suppose
to govern the gas evolution:

(a) nonreactive collisions
Xi + Xj = X + Xj, (16)

whenever 1< i, j <4, unlesdi, j} # {3, 4}; and
(b) reactions of the form

X1+ Xy = X3+ X4 (17)
as well as the reverse reactions
X3+ X4 = X1+ Xo. (18)

We suppose that reaction (17) is endothernig{ E, < E3 + E4), so that reaction (18)
is exothermic.

In the following, we need a weak form of Eq. (5), formulated for the above reactior
namely,

af; .
(057 at) =@, P -4, SF), ML<i<4 ¢eCpR, (19)

where, by (14),
4
(¢, R() = Z / d(Vij:k) - Tij:k - Tk(v) fi(w) dvdwdn (20)
j k=1 Duiij xS

and

4
@.SH)= > / @ (V) - Tisij - fi(v) fj(w) dvdwdn. (21)

jkl=1 Dij:xi xS

HereC,(R®) denotes the space of continuous, bounded, real functiofs .on
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According to the model, only the collision laws associated to reactions (16), (17), (1
may not vanish identically. For this reactions, we consider the following correspondents
the collision laws introduced by Krook and Wu for nonreactive gaseous mixtures [8].

ASSUMPTION

const>=0 whenWizz4(V, w, n) < 0,

_ (22)
0 WhenW12;34(v, w, n) > 0;

ri2.12(v, W, n) = {
the functions 1234, a4 1> are nonnegative constangen their domaing similarly ry;.j; is
nonnegative and constantfif, j} = {1, 2} or {i, j} # {3, 4}.

By (14) we also pupy:ij (V, W, N) = Fij.ii (Via:ij (V, W, N), Wig.ij (V, W, N), N).

Obviously, the present model is isotropic; i.§.(v) = fj(v) for 1 <i < 4 (wherev :=
|v| is the modulus of the velocity). The above assumption allows us to provide a mor
explicit form for Eq. (19). To this end, we consider the new unknowns

Fi(v) :=4mv?fi(v), forl<i <4, (23)
and we denote the concentration of the speiclas
li == /OOO Fi(v)dv, forl<i <4. (24)
Introducing the notationy.ij := 4xrij.q (1 <1, j, k, | < 4) and using suitable changes

of variables in (20) and (21), these formulae become

4
(¢. R () = Z Asij - el A ¢@) - Fc(v) R (w) dvdwd¢ dn, (25)
jkl=1 Kl:ij

4
(9,50 = Z Aijikl - |i|j/D_ ¢ () - F(v)Fj(w)dvdwd¢dn, (26)

jkl=1 ij ki
where
Dyisij = {(v, w, &, ) € RE x [0, 1)? | T;ij € R} (27)

andvy.ij (the postcollision velocity of the specigsis given by
1/2 12
. . m m
Disij = wasij (v, w, &, ) == | V& + H:(Pfl;ij + 2(#:) i Via@n =1, (28)
with
Vi = Via (v, w, ) 1= (M2v? + mPw? + 2memivw (2 — 1) 7% /(m +my), (29)
okt = Pitiij (v, w, &) 1= [Memy (V2 4+ w? 4+ 20w (2¢ — 1)) /(M + my)?

+2(Ex + E — Ei — Ej)(m¢ +m)]Y2. (30)

As mentioned in Section 1, one does not know nontrivial solutions of Eq. (19) with tf
P, andS given by (25) and (26). Therefore, numerical tests on exact solutions are not
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possible. However, indirect tests can be performed, because, starting from (19), (25),
(26), one can solve exactly the equations for chemical concentrations. Specifically, sup
that particles of species; andX; interact only by elastic collisions. Then, one finds easily
that

li=x-l3ls,  i=12,
.| 314 . (31)
li =—X-l3ly, 1 =34,
wherei = )»34;12.
Denoteli0 = 1;(0), 1 <i < 4. We distinguish two situations:

1. If 19 # 12, then the solutions of (31) are

ey 10y 1912 [exp(19at) —exp(12-20)] .
i) =17+ I?“exp(lf-;t)—lg-exp(?g-kt)’ =12 (32)
oy L IR0819)  exp(12-) .
i(©) = 7o) 19 exp(if 1) =34
2. 1f19 =12, then
W =10+ 2=
(33)

0
l i

Ii(t):m, i 23,4.

Now we can obtain exact expressions for energies. Indeed, the contribution to the
energy due to the internal energy of the particles is

4
Em(®) = li(OE:. (34)

Then, by virtue of the global conservation of energy, the total (kinetinternal) energy
of the gas particles is

Et) = Z < +Zl (OE = EO). (35)

Also, the total kinetic energy of the particles is given by the formula

4 4 2
Eunlt) = Y0 L (t) =y miHO >(O)+Z — I W]E (36)

i=1 i=1

Under the above considerations, one can compare the exact values of concentration
energies with those computed by means of the distribution functions resulting from
numerical solution of the system (19), (25), and (26) by the method of [7]. Moreover, o
can check the conservation of concentrations and global energy for the aforementic
numerical solutions.
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3. NUMERICAL METHOD

In this section we show how the particle method of [7] can be applied to obtain numeri
solutions of the Cauchy problem for Eq. (19). The procedure requires several steps:

Stepl. For a sufficiently small time stepne introduces a time-discretized version of
Eg. (19) and provides a convergent iteration scheme for solutions.

Stepll.  One approximates the initial data by weakly convergent sums of Dirac me
sures.

Steplll.  Theiteration scheme produces a weakly convergent sequence of approxima
solutions indexed by the iteration order. Every approximating solution is also the sum
Dirac measures. Howevegbecause of the nonlinearitgach iteration step produces a
power-like growing number of terms in the sums of point measures. In computdtiens
numerical effort would also have a power-like increase that the algorithm could not
be effectiveat this level. This is the moment when the stochastic element is intracuezd
limits the number of terms of the Dirac surby random selection. Theaccording to the
central result in[7] (Theoreml0), it follows that the numerical solutions almost always
converge weakl(in the sense of measujds the exact solutions of the equations.

Specifically, we proceed as follows:

Step |. To write the time-discretized equations, we first introduce some new notatic
For{i, j} = {1, 2} and{k, I} = {3, 4} define the measures

— 1
dHi; (v, w, ¢, n) = TFi(v)Fj(w)dvdwdg dn on Dk,
ij
(37)
1
dH;; (v, w, &, n) 1= TFi(U)Fj (w)dvdwdz dpy onR2 x [0, 1]2\Djj ki,
Mij

where

J_ii :Z/ Fi (v)Fj(w) dvdw d¢ dn,

Dl]:kl (38)
Jij ::/ Fi(v)Fj(w)dvdwd¢ dn.

R2 x[0,1]2\Djj

For{i, j} = {1, 2}, define the measure

dHij(w,w, ¢, n) = % Fi (v)Fj(w)dvdwd¢ dy on Ri x [0, 1)2. (39)
il

Let [[x]] denote the integer part of the real positive numkeConsider some time interval
[0, T] and some given time step© At < T. Then the discretized equations associate
with (19) with initial dataF°(v), 1 < i < 4 has the form

(¢a Fip+l) = <¢s QiFj))v (40)

where{i, j} = {1 2)or{i, j}=1{3,4},p € {0, 1, ..., I — 1}, J:=[[T/At]],and¢ € Cp(R).
HereQf] is defined as follows:
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if i, ) = {1, 2}, then

(¢.Qf) =

4
Mg

Z ( )‘-IklkAt)Ikp_)\ii;iiAtlip
M5

m; m;
+ [(M—:p — Aijij At)iﬁ (¢.HE) + (M—t{; — Aij; 34At> i (o, H.J)} PP

+ | i (q;ii;ii, i +Z)»|k|k ¢|k|k, |k) PlatiP
k=1
[)»lj ] JlJ (¢Il Hjs p)|J |I +)»34|J (4534”7 H34)|3F’|4D}At; (41)
if {i, j} = (3,4}, then
4
(6.Q) - Z(MH k'k'km>lk — X AP 1P (0, FP)
=1 (o)
~ 4 -
+ | i (B, KDL+ dicik (Bikcik Hig) 10| At1P
k=1
+ M2ij Ip(Przij, H) ALY 42)

In (41) and (42) the quantitie§”, H, H,‘j, NI Jf;, and H are defined as in (24),

|
(37), (38), and (39), simply by replacirfg andF; by F; Pand F{J respectively. Moreover,
4
MP =D mlP (43)

andd;ij;m =¢o f)ij I, With ﬂij .k given by (28).
An inspection of the above formulas shows that (40) takes the useful form as equa
for measures

4
(@. 07 = (¢.0P) — At D A ¢ (v) dvP(v) dvP(w) dz dn

jkil=1 Djj ki

FAUS huy | B dnpwr dPn) de d, (44)

]k| =1 klu

wheredv®(v) ;== FP(v)dv1<i<4,pef{0,1,...,J -1}

Step Il. According to the scheme of [7], we approximafeby convergent sequences
of discrete measures of the form

n
a,
= F E lévg, (45)
p=

with a, > 0 depending on initial mass densities and whiggedenotes the Dirac measure
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concentrated omg. We also approximate the Lebesgue measure on the unit sdodne
by sums of Dirac measures of the foép{:';:l 8¢,6n,-

One possible way to provide this kind of approximations is to use low-discrepan
methods which minimize the discrepancy [9]. Here we recall that the discrefapcy’)
of the real measurgs andu’ onRY is defined by

Jau= [
Xa Xa

WhereXa:z{(xl,...,Xq)eRq|xi <ag,1<i<g},witha:=(a...,aq).

D(u, ') := sup (46)

acR?

Step lll. Because of the product measures in the right-hand-side of (44), for a giv
input Dirac sum ofn terms, the next iteration step yields a sum of Dirac measures co
centrated om + cn® points (withc a natural constant). This implies a power-like increas:
ing computational effort. To decrease the computational effort and preserve the con
gence of the scheme, one appeals to random selection by applying Theorems 7 a
of [7].

Therefore, giving for chemical species<li < 4, an initial datum, sayvio'0 of the

form (45), the algorithm follows the computational chain® — v* — v*% — ... —

v 71971 12 corresponding to the diagonal of the scheme
vio,o — vio’l — Vio,z — > viO’J_l — vio'“]
2
Vill — v|12 - . - Uil,Jfl — Uil,.]
2
VBZ 20 2

(47)

Here, the horizontal chains represent the exact iterations of the time-discretized equati
such that foreach g k< J—-1andk+ 1< p<J the measurezik‘p is given as the
(p — k)th iteration for the input datg*. In addition,u**, 1 < k < J, is provided by the
random selection form*~** k > 1.

The weighted random selection method used in this paper increases the efficiency o
method, compared to the uniform selection procedure used in [7, 13]. More specifically,
stead of associating (at every time step) the same number of concentration points with «
one-particle distribution function, we choose the number of concentration points “prop
tional” to the physical concentration of the species. We fix a numlzerd approximate?
by sums of the form (45) concentratedmfn [[n-1°/ Z] 1 ]] points. At iteration step
p, we select a number’ =[[n - p/ZJ 1 Jp]] of concentratlon points, for each species

Finally we recall the idea behind the selection rule of [7]. Consider the probability spa
(2, Ba, P), with @ = [0, 1)* (in countable sese)f, the standardr-algebra of Borel
subsets of2, and P the measure of probability induced by uniform distribution onl)0
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Let  be a discrete measure concentrated/og {vq, v, ..., vm} C RY,
1 m
uzumza;&ﬁ. (48)
We are interested in approximating (48) by a sum of the same formnétm(m) < m
terms. For 1< k < n consider the random variablgs: @ — {1, 2, ..., m},
ik(@) == [[ox-m]] + 1. (49)
Theniy, ..., i, select randomly terms of the sum in (48). Defining
1 n
V=1, .= n Z‘Svikw’ (50)
k=1

We can show that ifi, converges weakly a® — oo, then for almost allv € 2, the sum
(50) converges to the same limit, as~> oo (for more details see [7]).

4. NUMERICAL RESULTS

Our experiments consisted of several tests of the model introduced in Section 2, applie
three and four distinct gaseous species with binary chemical reactions. The analysis pro\
oversimplified characterizations of the following examples of dilute reacting fluids:

—mixture of N, O», and NO with reaction BN+ O, — 2NO,
—mixture of HF, HCI, FCI, and Fwith reaction HR FCl — F, + HCI,
—mixture of BrF, FCI, BrCl, and Fwith reaction | + BrCl < BrF + FCI.

Since the numerical experiments on the models with three and four components lea
similar results, our presentation will refer only to a gas model with four interacting speci
In this respect, we considered the following three situations:

Case 1: Four distinct species with nonreactive collisions and exothermic reactions of
form HF 4+ FCI — F, + HCI in gaseous mixtures of HF, HCI, FCI, and &t sufficiently
low temperatures (only processes (16), and (18) occuiand ., X, are different).

In this case the model has exact solutions for concentrations and kinetic and inte
energies (32), (36), and (34), respectively.

Although the numerical scheme is nontrivially applied to this case, the absence of
dothermic reaction leads to a simplification because, by threshold considerdioas]
and Jj; = 0in (38). Then the information provided by the results of Case 1 might not
sufficiently relevant to describe the gas with both exothermic and endothermic reactic
Therefore we considered a separate situation:

Case 2: Four distinct species, e.g., nonreactive collisions, endothermic and exothel
reactions of the form Brif FCl— F, + BrCl, and F, + BrCl — BrF + FCI, in gaseous
mixtures of BrF, FCI, BrCl, and /all processes (16), (17), and (18) occur afd. .., X4
are different).

Unfortunately, in this situation, we do not know exact solutions of the equations f
macroscopic quantities. However, the results obtained are still useful since they proy
gualitative information on the time behavior of the macroscopic variables and enabl
nontrivial check of the conservation laws.
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To test the method when the thermodynamic quantities are oscillating in time, we c
sidered the following modification of Case 1 by adding an exterior pulsating source.

Case 3: The model of Case 1 with a pulsating external source of particles—a simplif
description of the homogeneous combustion, with injection and evacuation.

Specifically, we solved numerically Egs. (5) with a source term of the form

00 4 00
0i =0 -Z&(t—l~r)—2p/<2p+2/ fkdv> - f; -ZS(t—to—l 1), (51)
=1 1 /B =1

fori =1,2 3,4. Hereg; :=0, fori =1,2;g =g (v) ;= p- fi(O,v), fori = 3,4; and
p is a positive constant.

As in Case 1, this model also has exact solutions which can be easily deduced iterati
from (32), (34), and (36).

Here it should be emphasized that the numerical method can be applied to models
more complicated source terms added to Egs. (5) (e.g., represented by functions thal
be approximated by weighted sums of Dirac distributions).

We used the following input data (expressed in conventional, dimensionless units):

Case 1:

Massesm; = 3320 x 10~7, mp = 90.47 x 107/, mg = my = 63.08 x 10~".

Initial concentrations! ) = 0.02,19 = 0.08,1) = 0.4, 19 = 0.5.

Internal energiesE; = —42.4750,E, = 9.3264,E3 = 24.7642,E, = —20.7251.

Values of A: A11.11 = 1.2582, A1212 = Azg12 = 2.1073, A12.34 = 0, A1313 = 1.6091,
A1414 = L7564, Aopop = 2.9564, dozo3 = 24582, Apgq = 2.6055, Aszzzz = 1.9600,
Aagaq = 2.2547.

Initialization timet = 0; final timeT = 8.5.

Initialization function in the time-discretized equations:

m 3/2
Fo(v) = 47Tv2|i0(|) exp—miv?), 1<i<4 (52)
b

Case 2:

Massesm; = 16434 x 1077, my = 90.47x 107/, mz = 63.08 x 10/,ms = 19173 x
1077,

Initial concentrations!? = 0.35,19 = 0.6, 19 = 0.05,19 = 0.

Internal energiesE; = —15.3415,E, = —15.6736,E3 = —0.2328,E4 = —10.1946.

Values ofi: )»11;11 = 3.6020)\12;12 = A3a12 = 3.2792)\1234 £ 3.2792,)»13;132 2.7810,
Aa14 = 4.1002, Appop = 2.9564, Apzoz = 2.4582, Azan4 = 3.7774, r3zzz = 1.9600,
)\44;44 = 4.5985.

Initialization timet = O; final timeT = 1.75.

Initialization function in the time-discretized equations:

32 9
Fio(v)=4nv2|io<ﬁ> exp(—m'v >, 1<i<4 (53)

20 20

Case 3:
We use the same data as in Case 1; in addifion,0.2, 7 = 2, andry = 1, for the source
term (51).
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FIG. 1. The evolution of the concentrations in Case 1 for 88 iteration steps.

The approximation of the initial data by low-discrepancy sums of Dirac measures v
made by means of the Hammersley—Van der Corput sequences (see [9]). The “suppot
F? was included in [02000] and [06000] for F? given by (52) and (53), respectively.

We used the mixed congruential method to generate sequences of pseudo-random
bers{wn}nen. The elements, = z,/b, wherez, are given recursively by, = Az,_1 +
r (modb). In this relation,b > 1, A andr are fixed natural numbers, andis relatively
prime tob. The initialization is made with some integer<0z, < b. Hereb = 3 x 10%,

r = 1987654321, andl = 19867917. Each test starts with an arbitrary positjve: b.

Our results are summarized in Figs. 1-6, presenting the evolution of the concentrat
and energies for 88 iteration steps in Case 1, 44 iteration steps in Case 2, and 150 iter
steps in Case 3. The results provided by the numerical method are indicated by dots. |
dot corresponds to a number given by the arithmetic mean of the values obtained as re
of m simulations (corresponding to identical physical conditions). Wenset6 in Cases 1
and 2 andn = 15 in Case 3. In addition, we represent by continuous lines the values
the known exact solutions of the equations for the above macroscopic quantities. Here
remark that due to the similarities in the behavior of concentrations in Case 3, we illustr
only the evolution of the concentration for species 1 (see Fig. 5), as a typical example.

Moreover, Figs. 2 and 4 detail the values of the kinetic energy, calculated by two diff
ent methods. Specifically, the first method evaluates the kinetic energy (kinetic energ
represented in our figures by circles) at each iteration step, as a difference betweer
total energy (at = 0) and the numerical value of internal energy (expressed in terms
concentrations as in (36)). The second method yields the kinetic energy (kinetic energ
represented in our figures by points) as an average with respectto the one-particle distrib
functions.
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FIG. 2. The evolution of the energies in Case 1 for 88 iteration steps.
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FIG. 3. The evolution of the concentrations in Case 2 for 44 iteration steps.
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FIG. 4. The evolution of the energies in Case 2 for 44 iteration steps.

The results show good agreement between numerical and exact values.

With respect to the accuracy of the computations, one should observe that the derive
of the method introduces three basic sources of errors, which are due to the approxims
of the initial data, to time discretization, and to stochastic selection, respectively.

0.35 4

0.3 -

0.25

0.2

0.15

concentration of species 1

0.1

0.05

time

FIG.5. The evolution of the concentration of species 1 in Case 3 for 150 iteration steps.
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FIG. 6. The evolution of the energies in Case 3 for 150 iteration steps.

Asis known [9], the approximation of the initial data by low discrepancy can be accurate
controlled with little computational effort. However, the role of the errors introduced b
time discretization and selections requires a more careful analysis, as illustrated by
following considerations.

Our first remark is that, in Case 1, in the calculation of the concentrations and inter
energy, the stochastic selection was not needed. Consequently, the dominant contribi
to errors came essentially from time discretization.

Further, it can be easily seen that, for an arbitrary (fixed) small enough time step, b
the (autonomous) continuous and discrete dynamical systems associated with the evol
of the concentrations in Case 1 have the same attractor, namely, the Igoint 2, 19 +
19,0,12 — 1), provided that { < 12. Consequently, in this case, the errors of the concer
tration have to decrease at large scale times. Moreover, the error of the internal energy
the same large time behavior, since the computation of the internal energy depends onl
concentrations.

However, this behavior might be differentin Case 3, where the continuous and discreti
dynamical systems are not autonomous and one expects limit cycles. Here, obviously
time steps must be chosen sufficiently small with respect to the expected oscillation t
scales.

Furthermore, the above errors in concentrations affect the computation of the distribu
functions and, implicitly, the determination of the kinetic and total energies. On the otf
hand, in Case 1, the calculation of the last two quantities involves stochastic select
However, for a reasonable computational effort, as in Case 1, we still expect the er
from time discretization to play a dominant role at small time scale. This is because afte
small number of iterations/selection steps the errors accumulated by selection are still s
compared with those due to discretization.
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These phenomena are illustrated by Figs. 2 and 4.

We expect the same behavior of errors in the case when endothermic reactions are incl
in the model (Case 2). The main reason is that the discretization and selection procedure
essentially performed as in Case 1. Unfortunately, one cannot develop a similar argur
as before, because, at least at our present level of understanding, one cannot compa
large-time behavior of the solutions of the continuous and discretized dynamical syste
for concentrations as for Case 1.

Moreover, Fig. 2 shows the increase in the errors of kinetic and total energies at la
time scale. This can be understood as the result of the accumulation of selection erro
time increases, and the same argument holds in Case 2. The accumulation of errors ex
why in Fig. 2, for large time, “kinetic energy 1,” calculated from concentrations (withot
selection) is closer to the exact values, than “kinetic energy 2” (which is computed direc
from the distribution functions). The error accumulation also explains the difference,
Case 2, between the values of “kinetic energy 2" and “kinetic energy 1.” Here these quanti
are calculated as in Case 1 except that the random selection is also used to estimate int
(38). Thus, in Case 2, “kinetic energy 1" is expected to provide more accurate values t
“kinetic energy 2.”

One can easily estimate the contribution of the stochastic errors using the standarc
viation. However, we recall that the solution of the numerical scheme for the Boltzma
model results, after the time discretization of the model, by applying random selectic
to the solutions of the discretized system of equations. Therefore, in general the stan
deviation measures only the errors of the solution of the numerical scheme with respe
that of the discretized system.

Aswas argued before, the behavior of the errors introduced by the stochastic part of the
merical method can be better illustrated on the case of energy. In this respect, we studie
evolution of the standard deviation and its dependence on the number of simulations, fo
kinetic energy in Case 1 and for the total energy in Cases 1 and 2. For exemplification
present the results for the total energy in Case 2 (other situations are similar). Figure 7 il
trates the typical evolution of the stochastic errors and standard deviation with 6 and 40 te

In the particular Cases 1 and 2, the time discretization does not introduces any errc
the computation of the total energy. Then the standard deviation also measures the
error in the evaluation of the total energy. The data in the graphics show that errors of
simulations are larger than the graphics scale.

The accumulation of the probabilistic errors can be also be noted in Fig. 7 by the tende
of the standard deviation to increase with time (for a fixed number of simulations).

However, because of the convergence, there is a tendency for an increase in the nu
of simulations to diminish the standard deviation. In this respect, Figs. 8 and 9 repre:s
the dependence of the standard deviation on the number of tests for the total energ
Cases 1 and 2 at final tinfe. For a better illustration we also represent, in the same figure
the values of the error of the total energy for each test, as well as the dependence o
mean error in the total energy with respect to the number of tests. It also appears tha
data presented in Figs. 2 and 4 (provided by a series of six simulations) correspond
bigger error zone, and a reasonable increase of the number of simulations can dimi
considerably the stochastic errors.

Therefore, by the convergence of the method, for a sufficiently large number of simu
tions the mean values of the calculated macroscopic quantities tend to stabilize at a v
essentially determined by the time step of the discretization.
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FIG. 7. Errors of total energy in Case 2 along 44 iteration steps.

On the other hand, it is known (Proposition 4 in [7]) that, in the absence of selectiol
the errors due to discretization can be improved by decreasing the time step. Howeve
the case of random selection (for a fixed number of concentration points), a decreas
time step does not necessarily result in a decrease of errors. This is because when the

energy error  ©
mean energy error
+standard deviation -------
—standard deviation -------
b ©
jol
(o] o ° .
[o} . o
° o o fo) OO o o o
o]
>>>>>>>>>>> B o T
& ° 3 "o
£ ® 06 © o .
: @ © of & oo
> o . .
g ® o © ) o
2 o] o) © 6 ©0
s B e e
[ - =
® oo © ° © o 0o
° o 0® 0, @ o o o o o
%
- ° ) ©o _f _______ o o
Oo —O<_> Tttt © [o/e) o [olNoY
o] [oRo]
[0
¢ [0}
o]
© ©
o o o ° .
_1 |
[o]
T T T T T T T . :
0 20 40 60 80 100 120 140 160 180

simulation number

FIG. 8. Errors of total energy in Case 1 after 88 iteration steps.
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FIG. 9. Errors of total energy in Case 2 after 88 iteration steps.

step is diminished the number of iterations (implicitly that of selections) increases, wh
leads, in general, to the accumulation of selection errors. Indeed, for a given numbe
concentration points, an iteration time step that is too small may result in more inaccul
estimations than those obtained for a larger time step. This fact was confirmed by test
nonreactive models in [13]. In Table AE;,, andAE, att = 1 in Case 1 represent the
differences between the numerical and exact vallgs£ —8.589, E, = 8.779) of the
internal and kinetic energy, respectively, for different iteration stepdere, the kinetic
energy was computed as the arithmetic mean of the values obtainethfeoiB0 tests. Note
that for the internal energy (which in Case 1 is not affected by random selections) the er
are always improved by diminishing the time step. This is not the case for kinetic enelr
At 160 time steps, to improve the error, one has to increase the number of concentre
points for the measures associated to the one-particle distribution functions.

The tests also showed that one can still obtain satisfactory results using less concentr
points and a larger time step. For example, in Case 1, consider the following value:s
parameters: (a) 45,000 concentration points and 88 iteration steps (the situation prese
in Figs. 1 and 2); (b) 4,500 concentration points and 44 iteration steps. Calculating
maximal error for the kinetic energ\e2_ ands E®, for the situations (a) and (b) respectively,

TABLE |
Errors of Energies for Different Iteration Steps

p 5 10 20 40 80 160

AEnt —-0615 -0.290 -0.141 -0.070 -0.035 -0.017

AEcin 0.628 0.292 0.155 0.063 0.020 0.059
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/SEP = 0.4644. Similarly, for the internal energyE2, /s E

cin int int —

we obtained the ratidEZ,
0.4604.

The above remarks also make clear that the accuracy of the numerical scheme requi
proper correlation between the decrease of the timestegnd the increase in the number
n of concentration points of the measures in (45). This fact can be somehow underst
from the following considerations, which, although developed for the model presentec
Section 2, can be extended to the general case examined in [7].

Let u andv be measures of the form (48) and (50) respectively. For some continuc
real-valued functior on R® defineg := Jgs ¢ du. Then, the mean err@s; (v, i) of the
approximation ofp by [, ¢ dv can be evaluated by

&(v. 1) :=<'/ﬂ@3¢dv—/ﬂ{3¢d@> (54)

where( ) designates the mean with respect to the probability of sele&tidtirst, observe
that under the conditiop? < oo, one finds

1 [ — 1 1 —
& (. 1) < {wz —¢7) + > |¢|} (55)

To obtain (55) one applies the Cauchy inequality to the right-hand side of (54), and tt
one estimates the resulting expression using the definitid? afd the independence of
the random variables (49).

Then, for 1< p,q < J =[[T/At]], define

5¢(Vp’Js Uq.J) = 1[1}2)'\(‘ (d¢ (Vip“], \)iq~~]>>7 (56)

with v™? as in (47).

Using the properties of collision operators and the estimation (55) in (47), and compar
the iterations on linep — 1 and p, it follows that there exist some constamtsand c,
(depending o, initial data and the parameters of the collision operators in (5)) such th

(P P < %(HCZM)H. (57)

Then,

J
((/‘(p(v.].\],vo,\]) SZD(?(UD,J,VP—].,J) <

c
= At (58)

p=1

wherec depends on the same parameters;andc, andT is the final time.

Combining (58) with the estimated contribution of the error due to the time discretiz
tion (Proposition 4 of [7]), one obtains an upper bound on the total mean &srgrat
momentT,

Eotg < OnToaty + KT (At + >, (59)

1
At - /N
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where the constar{ depends on the same parameters, aghile

Snt.atg = (¢, v27) — (¢, w) (60)

represents the contribution of the error introduced by the approximation of the initial de
Herev? and v’ are the solutions of the discretized equations (44) for the exact a
approximated initial data® andv°, respectively.

Obviouslys, 1.1, depends on, T, andAt throughy? andv’”? and its behavior depends
on the way one approximates the initial data. If one applies low-discrepancy method:
is known [7] thatn 1 a1, — 0 @asn — oo andAt — 0. However, an explicit estimation on
the rapidity of convergence is missing for general models.

Nevertheless, due to the space isotropy of the present model, one can also provic
upper bound for (60). In this respect, we can adapt an argument for the simple gas [10]
comparing (in terms of discrepanay andvio'p, resulting aftep iteration steps from (44),
with starting measures’ and Uio.,o' respectively.

To this end, first observe that, without loss of generality, we can consider (59) w
¢ = ¢ (v) depending only on the radial component of velocity. In the following, we assun
that¢ has bounded variation.

Further, define

DOWOP, Py = lmax (D(v-o’p, vip)), (61)

<i<N !

whereD (P, vP) is the discrepancy (46) of measur€s’ andv”. Then observe that (44)
implies

[ (g, 0P = (o wPH)|

4
<[ (¢ °) = (&, )|+ AL Y Aija

jkl=1

¢ (v) dvyP(v) dvP(w) dg dy
Du,kl

¢ (Buaij) dvg P (v)

D jj

4
- ¢ (v) dvP(v) dvP(w) dg dn‘ + ALY )

Dij s jkl=1

x dyP(w) dg dp — & (B ij) dvd (v) dyP(w) d¢ dn
D jij

: (62)

with ¢, the characteristic function of interval,[0] and i i; given by (28).

Obviously, the first term, and each modulus in the first sum on the right-hand side
(62) are smaller tharD(v%P, vP). To see that the moduli in the last sum of (62) are
also smaller tharD(v%P, vP), it is sufficient to remark, in our case, that the applica-
tions of the formv — ¢ (Vi ij (v, w, ¢, n)) are characteristic functions of a finite union of
intervals.

Therefore, from (62) one has

DOOP,vP) < (L+ CoAl) - DO P, P, (63)
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with ¢y some constant depending on the same parametexsaalc,. Then by iterating
(63) one finds easily

D% v < Cg D0, 1Y), (64)
with Cy a constant depending @p.
Now, applying the Koksma—Hlavka inequality [9] to (60), and using (64) and the fa

thatD (190, 19) = O(@) for somes > 0 [9], one finally obtains

logn)s
5tot,q>§K(-)r( i) +KT<At+

1
WG ﬁ) (65)
where Ky also depends on the same parameters, @andc,. The estimations (59) and
(65) give some indication how to correlate the choice of the time step with the number
concentration points to control the error, for a given duration of the numerical experime
An unpleasant feature is the presence of the time step in the denominators of (59) and
as a consequence of the accumulation of the errors introduced by selections. This beh:
is reflected to some extent by numerical results.

The bounds (59) are not optimal. However, they show that (in the limits of the estimatic
(59)) the qualitative behavior of the errors is the same, irrespective of the presence of reac
processes in fluids. Nevertheless, the contribution of the Boltzmann terms correspont
to reactions is retained in the rather complicated expressions providing the values of
constants of (58) and (59).

5. CONCLUDING REMARKS

In this paper we presented the implementation of a convergent numerical scheme of
nonlinear Boltzmann model for reacting fluids, where one solves time-discretized equati
and the numerical solutions are obtained by iterations alternating with random selectio

The method was applied to a particular space-homogeneous model with binary reacti
for which one can calculate exactly certain macroscopic quantities. The computational ef
was O(n), the same as in applications on Boltzmann models for nonreacting multicol
ponent fluids with elastic Maxwellian collisions [13]. The numerical results indicate goc
agreement between the computed and exact values of the compared quantities. In partic
the bulk conservation relations are satisfied, on average, in the limit of the numerical err
Here, itis worth mentioning that, as conjectured in [7], the scheme for reacting fluids does
exhibit (at least numerically) the systematic freezing [4] of the NBI method for a simple ge

Implementating the scheme for models of reacting gases is more difficult than wt
modeling simple fluids. Indeed, the integral collision operators involving reaction thresho
are more difficult to evaluate than those corresponding to nonreactive processes, becat
the domain integration restrictions in the velocity variables imposed by the energy balar

Comparing our numerical results with those obtained for a simple gas [13], one ¢
observe the same general behavior of errors. Although not optimal, the upper bound
timations (59) and (65) explain, to some extent, the behavior of different type of erro
Essentially the same dependenceinas in the second (expression) term of (65) was
obtained using sharp estimations on errors in [10], where a low-discrepancy algorithm \
applied to the Krook—Wau version of the classical Boltzmann equation for a monatomic g
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The error analysis also provides information on the needed correlation between
parameters of the scheme to improve the accuracy of the results.

We recall that the numerical method of [7] can be applied to more general models, v
nonconstant collision kernels, with the computational effort being (at m@&t)logn).
Unfortunately, in those situations, it is difficult to find exact solutions. Then the tests sho
be rather limited to comparing the data provided by the numerical scheme with th
obtained from some relevant experiments.

The time discretization applied in this paper is a first-order Euler method. Howe\
higher order methods should improve the precision, without increasing the computatic
effort of the numerical scheme. This could be useful in further computations extending
method to space-dependent problems, by space discretization and application of the s
homogeneous scheme in each space-discretized cell. In this respect, the results of the pl
paper should be considered as a hecessary phase in understanding the simulation in ¢
space cell. In addition, since the dominant contribution to errors is due to nonlinearities, t
we expect (under suitable boundary conditions) that controlling the errors of the simulat
in a cell, one could obtain information on the errors of the simulation in the whole dome
of space. More specifically, the errors produced by space discretization should behave
those introduced by time discretization, as happens in the NBI scheme for nonhomogen
monatomic fluids [1]. Moreover, the errors from stochastic selections should accumulat
in the space homogeneous case analyzed in the present paper.

For the same considerations as in Section 3, the weighted selection applied in our nu
ical experiment could prove its effectiveness in handling space-dependent problems, w
one deals with a considerable number of cells, with different concentrations.

Finally observe that directly solving Boltzmann equations by particle methods is usefu
describing kinetic low-density regimes. However, this may become extremely expensiv
the continuous fluid dynamic limit, where efficient reactive BGK models [11] are more ad
guate (indeed they skillfully utilize the information that the distribution functions approac
local Maxwellians when the mean free path goes to zero). Under these circumstances
a reacting fluid with various regimes, one could apply a particle method strategy as de
oped for the simple gas [15], e.g., solving the reactive BGK model when (and where) t
is adequate and coupling the solutions to those of the nonlinear Boltzmann model solve
the so-called nonlinear Boltzmann regions [15]. Then an ultimate goal would be to obt
a fluid code able to establish and apply automatically the suitable model, function of
considered space region, and moment of evolution.
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