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This paper reports on the numerical implementation of a convergent scheme solv-
ing a general class of nonlinear Boltzmann-like equations for reacting fluids. The
scheme is tested on a model of space-homogeneous multicomponent gas with bi-
nary chemical reactions. Although the model cannot be solved exactly, it provides
analytical expressions for certain low-order moments of the one-particle distribu-
tion functions. Computing these moments by applying the numerical scheme, one
obtains a good agreement with the values obtained analytically. An error analysis is
performed and error control considerations complete the theoretical support of the
scheme developed in previous works.c© 2002 Elsevier Science
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1. INTRODUCTION

Accurate numerical modeling of nonlinear processes in dilute, reacting flows is critical for
solving transport problems both in fundamental and applied science, e.g., in astrophysics,
physics and chemistry of planetary atmospheres, technology of space vehicles, combustion,
chemical reactors, etc. In this respect, the past few years have been marked by considerable
progress in the development of algorithms for Boltzmann models. Since there are many
excellent textbooks and well-documented papers, a review on this topic is beyond the scope
of our work. From the multitude of papers, here we only mention a few successful recent
approaches to describing various reacting gas regimes: iterative linear Boltzmann transport
schemes [3], splitting algorithm for the BGK model with chemical reactions [11], lattice
BGK schemes for reacting fluids [16], and lattice gas automata methods [2]. A summary
of the literatures shows that the competitiveness of various methods is open and opinions
are still divided.
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To avoid mathematical difficulties, in many situations where dilute reacting fluids are
(considered as) properly described by nonlinear Boltzmann models, the numerical schemes
are actually applied to simplified reformulations of the models, e.g., obtained by linearization
of the collision operators. Nevertheless, there are physical processes, such as far-from-
equilibrium kinetic stages, where a more realistic description has to take into account the
effects of the nonlinearities of the Boltzmann collision operators.

As a result, there is increased interest [17] in precise numerical methods for nonlinear
Boltzmann models (with unaltered collision operators) able to describe the complexity of
phenomena specific to these type of equations.

In this respect, a rigorous numerical scheme has been recently introduced [7] to solve a
general class of nonlinear Boltzmann-like equations [5, 6] for dilute chemically reacting
fluids. This scheme extends an efficient, so-called particle method, developed by Nambu [14]
and Babovsky and Illner [1] (NBI), which combines analytical and stochastic techniques
into a convergent algorithm for the classical Boltzmann equation (for the simple gas).

To extend the NBI method by including chemical reactions, one has to face new math-
ematical difficulties, because of the presence of several species and threshold conditions
in the energetic balance, which imply more complications in the structure of the collision
operators, than for the simple gas. Since the collision operators are acting only on the
velocity-dependent part of the one-particle distribution functions, these difficulties are al-
ready encountered in the treatment of the simpler, space-homogeneous reacting fluids. For
such fluids, the method considers a time-discretized version of the Boltzmann model (keep-
ing the collision operators in their original forms) and introduces an iteration scheme that
converges, in some sense, to the solution of the Boltzmann equation, when the discretization
time step decreases to zero. The main benefit is that, using the properties of the collision
operators, the method provides a weak form of the iteration, which can be solved exactly in
the positive cone of discrete measures (defined on the velocity space, in our case). Applying
low-discrepancy techniques [9] to approximate (with arbitrary accuracy) the general initial
data by means of discrete measures, the above analytic procedure results in a convergent
scheme for the general solutions of the nonlinear Boltzmann equation. However, the non-
linearities imply a power-like increasing computational effort at each iteration step. This is
the stage when the stochastic element is invoked, its role being only to keep the numerical
effort unchanged. Specifically, at each iteration step, one uses random selection to diminish
the number of points supporting the input discrete measure. The final algorithm is shown
to converge almost everywhere to the true solution of the Boltzmann equation, in general,
with a numerical effort of orderO(n logn), as a consequence of the law of large numbers
for arrays of random variables.

The generalization of this scheme to modeling space-dependent fluids seems rather a
technical problem [7] and should follow essentially the same procedure as in [1], alternating
convection steps with collision steps, in disjoint locally homogeneous space cells.

The potential advantage of the method is a more accurate calculation of the distribution
functions and implicitly of the macroscopic properties, evaluated by integrals (averages)
of various physical quantities with respect to the measures defined by the distribution
functions.

Since most applications concern phenomena in nonhomogeneous fluids, the applicability
of the method should be ultimately tested on those situations. However, this seems rather
a difficult task since, in those cases, neither sufficient experimental data nor analytical
solutions are available for confrontation with numerical results.
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On the other hand, by virtue of the above considerations, numerical experiments on space-
independent models with exact solutions can provide useful illustrations of the convergence
of the method, error behavior, and robustness (having in mind the effects due to the presence
of reactive collision terms). Moreover, unlike the situation of a simple gas, the study of a
space-homogeneous reacting fluid could present intrinsic interest in certain cases, where
one is led to dynamical systems with nontrivial behavior [12].

The scheme of [7] was tested in [13] on the exact Krook–Wu solutions [8] of the multi-
component Boltzmann equation. Since the Krook–Wu equations refer only to nonreactive
gases, the results have not clarified the applicability of the method to models with chemical
reactions. Unfortunately, even in the space-independent case, the known exact solutions
of nonlinear Boltzmann models with chemical reactions are too simple to be of interest
in testing the above scheme. However, indirect tests can be performed on certain models
for space-homogeneous reacting fluids, which cannot be solved analytically, but provide
exactly solvable equations for the time evolution of certain macroscopic variables (e.g.,
concentration, energy). In this case, the macroscopic quantities calculated by means of
the numerical one-particle distribution functions (supplied by the scheme of [7]) can be
compared with those obtained analytically.

The aim of this paper is to present the results of such an indirect test, which, although
applied to a particular model, reveals the main features of the method. A detailed error
analysis is included and general error estimations are obtained completing the theoretical
developments of [7].

The implementation of the numerical method on the chosen model is performed in a more
efficient way than in [13] owing to a slightly improved procedure. Roughly speaking, for
each species, the number of concentration points of each discrete measure approximating
the one-particle distribution function is kept proportional to the concentration.

The paper is organized as follows. Section 2 introduces the specific kinetic equations for
analysis. The equations describe a gaseous mixture of (at most) four species of particles,
with one-state internal energy and binary nonreactive or/and reactive collisions. Section 3
details theoretical considerations concerning the application of the numerical scheme to the
equations introduced in Section 2. The numerical results of the tests and the error analysis
are presented in Section 4. The last section is devoted to conclusions.

2. GAS MODEL WITH TWO KINDS OF CHEMICAL REACTIONS

In this paper we refer to a particular form of the model presented in [5, 6]. In detail, we
consider a space-homogeneous gas mixture, composed ofN speciesX1, . . . , XN of point
particles with massmi , having one internal state characterized by a defined value of the
internal energyEi , 1≤ i ≤ N. The gas particles undergo binary nonreactive collisions as
well as reactions induced by binary collisions

Xi + X j → Xk + Xl , 1≤ i, j, k, l ≤ N. (1)

According to the model, reactions of the form (1) can occur only if the microscopic con-
servation of mass, momentum, and energy is fulfilled; i.e.,

mi +mj = mk +ml , (2)

mi v+mj w = mkv′ +ml w′, (3)
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mi |v|2
2
+ Ei + mj |w|2

2
+ Ej = mk|v′|2

2
+ Ek + ml |w′|2

2
+ El , (4)

wherev andw are the precollision velocities of the particlesi and j , andv′ andw′ are the
postcollision velocities of the particlesk andl , respectively.

Following, e.g., [5], it can be easily seen that, in the spatially homogeneous case, the one-
particle distribution functionsfi = fi (t, v) describing the species 1≤ i ≤ N, at moment
t ≥ 0, are solutions of the system of equations

∂

∂t
fi = Pi (f )− Si (f ), 1≤ i ≤ N, (5)

with the gain and loss termsPi andSi given by

Pi (f )(t, v) :=
N∑

j,k,l=1

∫
Di j ;kl (v)×S

pkl;i j (v,w, n) fk(t, vi j ;kl) fl (t,wi j ,kl) dw dn (6)

Si (f )(t, v) := fi (t, v)
N∑

j,k,l=1

∫
Di j ;kl (v)×S

rkl;i j (v,w, n) f j (t,w) dw dn. (7)

In (5), (6), and (7), f := ( f1, . . . , fN), S := {n ∈ R3 | |n| = 1}, and Di j ;kl(v) =
{w ∈ R3 | (v,w) ∈ Di j ;kl}, where

Di j ;kl := {(v,w) ∈ R3× R3 | W̄i j ;kl(v,w) ≥ 0}, (8)

with

W̄i j ;kl(v,w) := mi mj

2(mi +mj )
|v− w|2+ Ei + Ej − Ek − El (9)

and

vi j ;kl = vi j ;kl(v,w, n) := mi v+mj w
mi +mj

+
[

2 ·ml

mk(mi +mj )
W̄i j ;kl(v,w)

]1/2

· n, (10)

wi j ;kl = wi j ;kl(v,w, n) := mi v+mj w
mi +mj

−
[

2 ·mk

ml (mi +mj )
W̄i j ;kl(v,w)

]1/2

· n, (11)

for all (v,w, n) ∈ Di j ;kl × S. Further, the collision lawspkl;i j (v,w, n)andrkl;i j (v,w, n)are
given, positive measurable functions onDi j ;kl × S. They are proportional to the probability
of occurrence of reaction (1). Moreover,

pkl;i j (v,w, n) = pkl; j i (w, v, n) = plk;i j (v,w,−n), (12)

rkl;i j (v,w, n) = rkl; j i (w, v, n) = rlk;i j (v,w,−n), (13)∫
Di j ;kl×S

ϕ(v,w)pkl;i j (v,w, n)ψ(vkl;i j ,wkl;i j ) dv dw dn

=
∫
Dkl;i j×S

ϕ(vi j ;kl ,wi j ;kl), ri j ;kl(v,w, n)ψ(v,w) dv dw dn, (14)
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and ∫
Di j ;kl×S

ϕ(v,w)(v,w, n)ψ(vkl;i j ,wkl;i j ) dv dw dn

=
∫
Dkl;i j×S

ϕ(vi j ;kl ,wi j ;kl)ψ(v,w) dv dw dn (15)

for all (ϕ, ψ)∈C(R3× R3)×Cc(R3× R3) ∪ Cc(R3×R3)×C(R3× R3). Here, as usual,
C(R3× R3) denotes the space of real continuous functions onR3× R3 andCc(R3× R3)

is the subspace ofC(R3× R3) consisting of functions with compact support.
It is known [5] that, if ri j ;kl(v,w, n) ≤ C(1+ |v|2+ |w|2) for some constant,C > 0,

then the Cauchy problem associated with the system (5) has, in some sense, unique positive
global solutionsfi (t) ∈ L1(R3; dv)− real, 1≤ i ≤ N, provided that the initial data are
positive and their fourth-order momenta are well defined. In addition, the solutions satisfy
the global mass, momentum, and energy (kinetic+ internal) conservation (for more details
the interested reader is referred to [5–7]).

For the numerical purposes of this paper, we apply the above considerations to a gaseous
mixture composed ofN = 4 species. Only the following collisions (reactions) are supposed
to govern the gas evolution:

(a) nonreactive collisions

Xi + X j → Xi + X j , (16)

whenever 1≤ i, j ≤ 4, unless{i, j } 6= {3, 4}; and
(b) reactions of the form

X1+ X2→ X3+ X4 (17)

as well as the reverse reactions

X3+ X4→ X1+ X2. (18)

We suppose that reaction (17) is endothermic (E1+ E2 < E3+ E4), so that reaction (18)
is exothermic.

In the following, we need a weak form of Eq. (5), formulated for the above reactions,
namely, (

φ,
∂ fi
∂t

)
= (φ, Pi (f ))− (φ, Si (f )), (∀)1≤ i ≤ 4; φ ∈ Cb(R3), (19)

where, by (14),

(φ, Pi (f )) =
4∑

j,k,l=1

∫
Dkl;i j×S

φ(vi j ;kl) · ri j ;kl · fk(v) fl (w) dv dw dn (20)

and

(φ, Si (f )) =
4∑

j,k,l=1

∫
Di j ;kl×S

φ(v) · rkl;i j · fi (v) f j (w) dv dw dn. (21)

HereCb(R3) denotes the space of continuous, bounded, real functions onR3.
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According to the model, only the collision laws associated to reactions (16), (17), (18)
may not vanish identically. For this reactions, we consider the following correspondents of
the collision laws introduced by Krook and Wu for nonreactive gaseous mixtures [8].

ASSUMPTION.

r12;12(v,w, n) =
{

const≥ 0 whenW̄12;34(v,w, n) < 0,

0 whenW̄12;34(v,w, n) ≥ 0; (22)

the functions r12;34, r34;12 are nonnegative constants(on their domains); similarly ri j ;i j is
nonnegative and constant if{i, j } 6= {1, 2} or {i, j } 6= {3, 4}.

By (14) we also putpkl;i j (v,w, n) = ri j ;kl(vkl;i j (v,w, n),wkl;i j (v,w, n), n).
Obviously, the present model is isotropic; i.e.,fi (v) = fi (v) for 1≤ i ≤ 4 (wherev :=
|v| is the modulus of the velocityv). The above assumption allows us to provide a more
explicit form for Eq. (19). To this end, we consider the new unknowns

Fi (v) := 4πv2 fi (v), for 1≤ i ≤ 4, (23)

and we denote the concentration of the speciesi by

Ii :=
∫ ∞

0
Fi (v) dv, for 1≤ i ≤ 4. (24)

Introducing the notationλkl;i j := 4πri j ;kl (1≤ i, j, k, l ≤ 4) and using suitable changes
of variables in (20) and (21), these formulae become

(φ, Pi (f )) =
4∑

j,k,l=1

λkl;i j · Ik Il

∫
Dkl;i j

φ(ṽ) · Fk(v)Fl (w) dv dw dζ dη, (25)

(φ, Si (f )) =
4∑

j,k,l=1

λi j ;kl · Ii I j

∫
Di j ;kl

φ(v) · Fi (v)Fj (w) dv dw dζ dη, (26)

where

Dkl;i j := {(v,w, ζ, η) ∈ R2
+ × [0, 1)2 | ṽkl;i j ∈ R} (27)

andṽkl;i j (the postcollision velocity of the speciesi ) is given by

ṽkl;i j = ṽkl;i j (v,w, ζ, η) :=
[

V2
kl +

mk

ml
ρ2

kl;i j + 2

(
mk

ml

)1/2

ρkl;i j Vkl(2η − 1)

]1/2

, (28)

with

Vkl = Vkl(v,w, ζ ) := (m2
kv

2+m2
l w

2+ 2mkmlvw(2ζ − 1)
)1/2/

(mk +ml ), (29)

ρkl;i j = ρkl;i j (v,w, ζ ) := [mkml (v
2+ w2+ 2vw(2ζ − 1))/(mk +ml )

2

+ 2(Ek + El − Ei − Ej )(mk +ml )]
1/2. (30)

As mentioned in Section 1, one does not know nontrivial solutions of Eq. (19) with the
Pi andSi given by (25) and (26). Therefore, numerical tests on exact solutions are not yet
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possible. However, indirect tests can be performed, because, starting from (19), (25), and
(26), one can solve exactly the equations for chemical concentrations. Specifically, suppose
that particles of speciesX1 andX2 interact only by elastic collisions. Then, one finds easily
that {

İ i = λ · I3I4, i = 1, 2,

İ i = −λ · I3I4, i = 3, 4,
(31)

whereλ := λ34;12.
DenoteI 0

i := Ii (0), 1≤ i ≤ 4. We distinguish two situations:

1. If I 0
3 6= I 0

4 , then the solutions of (31) are


Ii (t) = I 0

i + I 0
3 I 0

4 · [exp(I 0
4 · λt)− exp(I 0

3 · λt)]
I 0
4 · exp(I 0

4 · λt)− I 0
3 · exp(I 0

3 · λt)
, i = 1, 2,

Ii (t) = I 0
i (I 0

4−I 0
3) · exp(I 0

i · λt)
I 0
4 · exp(I 0

4 · λt)− I 0
3 · exp(I 0

3 · λt)
, i = 3, 4.

(32)

2. If I 0
3 = I 0

4 , then


Ii (t) = I 0

i + (I 0
3)

2 · λt

(1+ I 0
3 · λt)

, i = 1, 2,

Ii (t) = I 0
i

(1+ I 0
i · λt)

, i = 3, 4.
(33)

Now we can obtain exact expressions for energies. Indeed, the contribution to the gas
energy due to the internal energy of the particles is

Eint(t) =
4∑

i=1

Ii (t)Ei . (34)

Then, by virtue of the global conservation of energy, the total (kinetic+ internal) energy
of the gas particles is

E(t) =
4∑

i=1

mi
〈
v2

i

〉
(t)

2
+

4∑
i=1

Ii (t)Ei = E(0). (35)

Also, the total kinetic energy of the particles is given by the formula

Ecin(t) =
4∑

i=1

mi
〈
v2

i

〉
(t)

2
=

4∑
i=1

mi
〈
v2

i

〉
(0)

2
+
∑
i=1

[
I 0
i − Ii (t)

]
Ei . (36)

Under the above considerations, one can compare the exact values of concentrations and
energies with those computed by means of the distribution functions resulting from the
numerical solution of the system (19), (25), and (26) by the method of [7]. Moreover, one
can check the conservation of concentrations and global energy for the aforementioned
numerical solutions.
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3. NUMERICAL METHOD

In this section we show how the particle method of [7] can be applied to obtain numerical
solutions of the Cauchy problem for Eq. (19). The procedure requires several steps:

STEP I. For a sufficiently small time step, one introduces a time-discretized version of
Eq. (19)and provides a convergent iteration scheme for solutions.

STEP II. One approximates the initial data by weakly convergent sums of Dirac mea-
sures.

STEPIII. The iteration scheme produces a weakly convergent sequence of approximating
solutions, indexed by the iteration order. Every approximating solution is also the sum of
Dirac measures. However, because of the nonlinearity, each iteration step produces a
power-like growing number of terms in the sums of point measures. In computations, the
numerical effort would also have a power-like increase, so that the algorithm could not
be effective, at this level. This is the moment when the stochastic element is introduced: one
limits the number of terms of the Dirac sums, by random selection. Then, according to the
central result in[7] (Theorem10), it follows that, the numerical solutions almost always
converge weakly(in the sense of measures) to the exact solutions of the equations.

Specifically, we proceed as follows:

Step I. To write the time-discretized equations, we first introduce some new notation.
For {i, j } = {1, 2} and{k, l } = {3, 4} define the measures

dH̄ i j (v,w, ζ, η) := 1

J̄i j
Fi (v)Fj (w) dv dw dζ dη onDi j ;kl ,

(37)

d Hi j (v,w, ζ, η) := 1

Ji j
Fi (v)Fj (w) dv dw dζ dη onR2

+ × [0, 1]2\Di j ;kl ,

where

J̄i j :=
∫
Di j ;kl

Fi (v)Fj (w) dv dw dζ dη,

(38)

Ji j :=
∫
R2
+×[0,1]2\Di j ;kl

Fi (v)Fj (w) dv dw dζ dη .

For {i, j } = {1, 2}, define the measure

d Hi j (v,w, ζ, η) := 1

Ii I j
Fi (v)Fj (w) dv dw dζ dη onR2

+ × [0, 1)2. (39)

Let [[x]] denote the integer part of the real positive numberx. Consider some time interval
[0, T ] and some given time step 0< 1t < T . Then the discretized equations associated
with (19) with initial dataF0

i (v), 1≤ i ≤ 4 has the form(
φ, F p+1

i

) = (φ, Qp
i j

)
, (40)

where{i, j }= {1, 2}or{i, j }= {3, 4}, p ∈ {0, 1, . . . , J−1}, J := [[T/1t ]], andφ ∈Cb(R).
HereQp

i j is defined as follows:
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if {i, j } = {1, 2}, then

(
φ, Qp

i j

)
:=
[

4∑
k=1

(
mk

M p
tot

− λik;ik1t

)
I p
k − λii ;ii1t I p

i

]
I p
i

(
φ, F p

i

)
+
[(

mj

M p
tot

− λi j ;i j1t

)
J p

i j

(
φ, H p

i j

)+( mj

M p
tot

− λi j ;341t

)
J̄ p

i j

(
φ, H̄ p

i j

)]
I p

j I p
i

+
[
λii ;ii

(
φ̃ ii ;ii , H p

ii

)
I p
i +

4∑
k=1

λik;ik
(
φ̃ik;ik, H p

ik

)
I p
k

]
1t I p

i

+ [λi j ;i j J p
i j

(
φ̃i j ;i j , H p

i j

)
I p

j I p
i + λ34;i j

(
φ̃34;i j , H p

34

)
I p
3 I p

4

]
1t; (41)

if {i, j } = {3, 4}, then

(
φ, Qp

i j

)
:=
[

4∑
k=1

(
mk

M p
tot

− λik;ik1t

)
I p
k − λii ;ii1t I p

i

]
I p
i

(
φ, F p

i

)
+
[
λii ;ii

(
φ̃ ii ;ii , H p

ii

)
I p
i +

4∑
k=1

λik;ik
(
φ̃ik;ik, H p

ik

)
I p
k

]
1t I p

i

+ λ12;i j J̄ p
12

(
φ̃12;i j , H̄ p

12

)
1t I p

1 I p
2 . (42)

In (41) and (42) the quantitiesI p
i , H p

i j , H̄ p
i j , J p

i j , J̄ p
i j , and H p

i j are defined as in (24),
(37), (38), and (39), simply by replacingFi andFj by F p

i andF p
j respectively. Moreover,

M p
tot :=

4∑
i=1

mi I
p

i (43)

andφ̃i j ;kl := φ ◦ ṽi j ;kl , with ṽi j ;kl given by (28).
An inspection of the above formulas shows that (40) takes the useful form as equation

for measures

(
φ, ν

p+1
i

) = (φ, ν p
i

)−1t
4∑

j,k,l=1

λi j ,kl

∫
Di j ,kl

φ(v) dν p
i (v) dν p

j (w) dζ dη

+1t
4∑

j,k,l=1

λkl,i j

∫
Dkl,i j

φ̃kl,i j (v) dν p
k (v) dν p

l (w) dζ dη, (44)

wheredν p
i (v) := F p

i (v) dv 1≤ i ≤ 4, p ∈ {0, 1, . . . , J − 1}.
Step II. According to the scheme of [7], we approximateν0

i by convergent sequences
of discrete measures of the form

µ0
n =

an

n

n∑
p=1

δv0
p
, (45)

with an > 0 depending on initial mass densities and whereδv0
p

denotes the Dirac measure
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concentrated onv0
p. We also approximate the Lebesgue measure on the unit squaredζdη

by sums of Dirac measures of the form1n
∑n

p=1 δζpδηp .
One possible way to provide this kind of approximations is to use low-discrepancy

methods which minimize the discrepancy [9]. Here we recall that the discrepancyD(µ,µ′)
of the real measuresµ andµ′ onRq is defined by

D(µ,µ′) := sup
a∈Rq

∣∣∣∣ ∫
Xa

dµ−
∫

Xa

dµ′
∣∣∣∣ , (46)

whereXa := {(x1, . . . , xq) ∈ Rq | xi ≤ ai , 1≤ i ≤ q}, with a := (a1, . . . ,aq).

Step III. Because of the product measures in the right-hand-side of (44), for a given
input Dirac sum ofn terms, the next iteration step yields a sum of Dirac measures con-
centrated onn+ cn3 points (withc a natural constant). This implies a power-like increas-
ing computational effort. To decrease the computational effort and preserve the conver-
gence of the scheme, one appeals to random selection by applying Theorems 7 and 8
of [7].

Therefore, giving for chemical species 1≤ i ≤ 4, an initial datum, sayν0,0
i of the

form (45), the algorithm follows the computational chainν0,0
i → ν

1,1
i → ν

2,2
i → · · · →

ν
J−1,J−1
i → ν

J,J
i corresponding to the diagonal of the scheme

ν
0,0
i → ν

0,1
i → ν

0,2
i → · · · → ν

0,J−1
i → ν

0,J
i

oo
ν

1,1
i → ν

1,2
i → · · · → ν

1,J−1
i → ν

1,J
i

oo
ν

2,2
i → · · · → ν

2,J−1
i → ν

2,J
i

...
...

oo
ν

J−1,J−1
i →ν J−1,J

i

oo
ν

J,J
i .

(47)

Here, the horizontal chains represent the exact iterations of the time-discretized equations,
such that for each 0≤ k ≤ J − 1 andk+ 1≤ p ≤ J the measureνk,p

i is given as the
(p− k)th iteration for the input dataνk,k

i . In addition,νk,k
i , 1≤ k ≤ J, is provided by the

random selection formνk−1,k
i , k ≥ 1.

The weighted random selection method used in this paper increases the efficiency of the
method, compared to the uniform selection procedure used in [7, 13]. More specifically, in-
stead of associating (at every time step) the same number of concentration points with each
one-particle distribution function, we choose the number of concentration points “propor-
tional” to the physical concentration of the species. We fix a numbern and approximateν0

i

by sums of the form (45) concentrated onn0
i = [[n · I 0

i /
∑4

j=1 I 0
j ]] points. At iteration step

p, we select a numbernp
i = [[n · I p

i /
∑4

j=1 I p
j ]] of concentration points, for each speciesi .

Finally we recall the idea behind the selection rule of [7]. Consider the probability space
(Ä, βÄ, P), with Ä = [0, 1)∞ (in countable sese),βÄ the standardσ -algebra of Borel
subsets ofÄ, andP the measure of probability induced by uniform distribution on [0, 1).
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Letµ be a discrete measure concentrated onV = {v1, v2, . . . , vm} ⊂ Rq,

µ = µm = 1

m

m∑
i=1

δvi . (48)

We are interested in approximating (48) by a sum of the same form withn = n(m) ≤ m
terms. For 1≤ k ≤ n consider the random variablesi k : Ä→ {1, 2, . . . ,m},

i k(ω) := [[ωk ·m]] + 1. (49)

Theni1, . . . , i n select randomlyn terms of the sum in (48). Defining

ν = νn := 1

n

n∑
k=1

δvik(ω)
, (50)

We can show that ifµm converges weakly asm→∞, then for almost allω ∈ Ä, the sum
(50) converges to the same limit, asn→∞ (for more details see [7]).

4. NUMERICAL RESULTS

Our experiments consisted of several tests of the model introduced in Section 2, applied to
three and four distinct gaseous species with binary chemical reactions. The analysis provides
oversimplified characterizations of the following examples of dilute reacting fluids:

—mixture of N2, O2, and NO with reaction N2+O2→ 2NO,
—mixture of HF, HCl, FCl, and F2 with reaction HF+ FCl→ F2+ HCl,
—mixture of BrF, FCl, BrCl, and F2 with reaction F2+ BrCl↔ BrF+ FCl.

Since the numerical experiments on the models with three and four components lead to
similar results, our presentation will refer only to a gas model with four interacting species.

In this respect, we considered the following three situations:

Case 1: Four distinct species with nonreactive collisions and exothermic reactions of the
form HF+ FCl→ F2+ HCl in gaseous mixtures of HF, HCl, FCl, and F2 at sufficiently
low temperatures (only processes (16), and (18) occur andX1,. . . , X4 are different).

In this case the model has exact solutions for concentrations and kinetic and internal
energies (32), (36), and (34), respectively.

Although the numerical scheme is nontrivially applied to this case, the absence of en-
dothermic reaction leads to a simplification because, by threshold considerations,Ji j = 1
and J̄i j = 0 in (38). Then the information provided by the results of Case 1 might not be
sufficiently relevant to describe the gas with both exothermic and endothermic reactions.
Therefore we considered a separate situation:

Case 2: Four distinct species, e.g., nonreactive collisions, endothermic and exothermic
reactions of the form BrF+FCl→F2+ BrCl, and F2+ BrCl→ BrF+ FCl, in gaseous
mixtures of BrF, FCl, BrCl, and F2 (all processes (16), (17), and (18) occur andX1, . . . , X4

are different ).
Unfortunately, in this situation, we do not know exact solutions of the equations for

macroscopic quantities. However, the results obtained are still useful since they provide
qualitative information on the time behavior of the macroscopic variables and enable a
nontrivial check of the conservation laws.
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To test the method when the thermodynamic quantities are oscillating in time, we con-
sidered the following modification of Case 1 by adding an exterior pulsating source.

Case 3: The model of Case 1 with a pulsating external source of particles—a simplified
description of the homogeneous combustion, with injection and evacuation.

Specifically, we solved numerically Eqs. (5) with a source term of the form

σi := gi ·
∞∑

l=1

δ(t − l · τ)− 2p

/(
2p+

4∑
k=1

∫
R3

fk dv

)
· fi ·

∞∑
l=1

δ(t − τ0− l · τ), (51)

for i = 1, 2, 3, 4. Heregi := 0, for i = 1, 2; gi = gi (v) := p · fi (0, v), for i = 3, 4; and
p is a positive constant.

As in Case 1, this model also has exact solutions which can be easily deduced iteratively
from (32), (34), and (36).

Here it should be emphasized that the numerical method can be applied to models with
more complicated source terms added to Eqs. (5) (e.g., represented by functions that can
be approximated by weighted sums of Dirac distributions).

We used the following input data (expressed in conventional, dimensionless units):

Case 1:
Masses:m1 = 33.20× 10−7, m2 = 90.47× 10−7, m3 = m4 = 63.08× 10−7.
Initial concentrations:I 0

1 = 0.02, I 0
2 = 0.08, I 0

3 = 0.4, I 0
4 = 0.5.

Internal energies:E1 = −42.4750,E2 = 9.3264,E3 = 24.7642,E4 = −20.7251.
Values of λ: λ11;11 = 1.2582, λ12;12 = λ34;12 = 2.1073, λ12;34 = 0, λ13;13 = 1.6091,

λ14;14 = 1.7564, λ22;22 = 2.9564, λ23;23 = 2.4582, λ24;24 = 2.6055, λ33;33 = 1.9600,
λ44;44 = 2.2547.

Initialization timet = 0; final timeT = 8.5.
Initialization function in the time-discretized equations:

F0
i (v) = 4πv2I 0

i

(
mi

π

)3/2

exp(−mi v
2), 1≤ i ≤ 4. (52)

Case 2:
Masses:m1 = 164.34× 10−7,m2 = 90.47× 10−7,m3 = 63.08× 10−7,m4 = 191.73×

10−7.
Initial concentrations:I 0

1 = 0.35, I 0
2 = 0.6, I 0

3 = 0.05, I 0
4 = 0.

Internal energies:E1 = −15.3415,E2 = −15.6736,E3 = −0.2328,E4 = −10.1946.
Values ofλ:λ11;11 = 3.6020,λ12;12 = λ34;12 = 3.2792,λ12;34 = 3.2792,λ13;13= 2.7810,

λ14;14 = 4.1002, λ22;22 = 2.9564, λ23;23 = 2.4582, λ24;24 = 3.7774, λ33;33 = 1.9600,
λ44;44 = 4.5985.

Initialization timet = 0; final timeT = 1.75.
Initialization function in the time-discretized equations:

F0
i (v) = 4πv2I 0

i

(
mi

20π

)3/2

exp

(
−mi v

2

20

)
, 1≤ i ≤ 4. (53)

Case 3:
We use the same data as in Case 1; in addition,p = 0.2,τ = 2, andτ0 = 1, for the source

term (51).
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FIG. 1. The evolution of the concentrations in Case 1 for 88 iteration steps.

The approximation of the initial data by low-discrepancy sums of Dirac measures was
made by means of the Hammersley–Van der Corput sequences (see [9]). The “support” of
F0

i was included in [0, 2000] and [0, 6000] for F0
i given by (52) and (53), respectively.

We used the mixed congruential method to generate sequences of pseudo-random num-
bers{ωn}n∈N. The elementsωn = zn/b, wherezn are given recursively byzn = λzn−1+
r (modb). In this relation,b > 1, λ and r are fixed natural numbers, andλ is relatively
prime tob. The initialization is made with some integer 0≤ z0 < b. Hereb = 3× 1030,
r = 1987654321, andλ = 19867917. Each test starts with an arbitrary positivez0 < b.

Our results are summarized in Figs. 1–6, presenting the evolution of the concentrations
and energies for 88 iteration steps in Case 1, 44 iteration steps in Case 2, and 150 iteration
steps in Case 3. The results provided by the numerical method are indicated by dots. Each
dot corresponds to a number given by the arithmetic mean of the values obtained as results
of m simulations (corresponding to identical physical conditions). We setm= 6 in Cases 1
and 2 andm= 15 in Case 3. In addition, we represent by continuous lines the values of
the known exact solutions of the equations for the above macroscopic quantities. Here, we
remark that due to the similarities in the behavior of concentrations in Case 3, we illustrate
only the evolution of the concentration for species 1 (see Fig. 5), as a typical example.

Moreover, Figs. 2 and 4 detail the values of the kinetic energy, calculated by two differ-
ent methods. Specifically, the first method evaluates the kinetic energy (kinetic energy 1,
represented in our figures by circles) at each iteration step, as a difference between the
total energy (att = 0) and the numerical value of internal energy (expressed in terms of
concentrations as in (36)). The second method yields the kinetic energy (kinetic energy 2,
represented in our figures by points) as an average with respect to the one-particle distribution
functions.
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FIG. 2. The evolution of the energies in Case 1 for 88 iteration steps.

FIG. 3. The evolution of the concentrations in Case 2 for 44 iteration steps.
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FIG. 4. The evolution of the energies in Case 2 for 44 iteration steps.

The results show good agreement between numerical and exact values.
With respect to the accuracy of the computations, one should observe that the derivation

of the method introduces three basic sources of errors, which are due to the approximation
of the initial data, to time discretization, and to stochastic selection, respectively.

FIG. 5. The evolution of the concentration of species 1 in Case 3 for 150 iteration steps.
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FIG. 6. The evolution of the energies in Case 3 for 150 iteration steps.

As is known [9], the approximation of the initial data by low discrepancy can be accurately
controlled with little computational effort. However, the role of the errors introduced by
time discretization and selections requires a more careful analysis, as illustrated by the
following considerations.

Our first remark is that, in Case 1, in the calculation of the concentrations and internal
energy, the stochastic selection was not needed. Consequently, the dominant contribution
to errors came essentially from time discretization.

Further, it can be easily seen that, for an arbitrary (fixed) small enough time step, both
the (autonomous) continuous and discrete dynamical systems associated with the evolution
of the concentrations in Case 1 have the same attractor, namely, the point(I 0

1 + I 0
3 , I 0

2 +
I 0
3 , 0, I 0

4 − I 0
3 ), provided thatI 0

3 < I 0
4 . Consequently, in this case, the errors of the concen-

tration have to decrease at large scale times. Moreover, the error of the internal energy has
the same large time behavior, since the computation of the internal energy depends only on
concentrations.

However, this behavior might be different in Case 3, where the continuous and discretized
dynamical systems are not autonomous and one expects limit cycles. Here, obviously the
time steps must be chosen sufficiently small with respect to the expected oscillation time
scales.

Furthermore, the above errors in concentrations affect the computation of the distribution
functions and, implicitly, the determination of the kinetic and total energies. On the other
hand, in Case 1, the calculation of the last two quantities involves stochastic selection.
However, for a reasonable computational effort, as in Case 1, we still expect the errors
from time discretization to play a dominant role at small time scale. This is because after a
small number of iterations/selection steps the errors accumulated by selection are still small
compared with those due to discretization.
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These phenomena are illustrated by Figs. 2 and 4.
We expect the same behavior of errors in the case when endothermic reactions are included

in the model (Case 2). The main reason is that the discretization and selection procedures are
essentially performed as in Case 1. Unfortunately, one cannot develop a similar argument
as before, because, at least at our present level of understanding, one cannot compare the
large-time behavior of the solutions of the continuous and discretized dynamical systems
for concentrations as for Case 1.

Moreover, Fig. 2 shows the increase in the errors of kinetic and total energies at large
time scale. This can be understood as the result of the accumulation of selection errors as
time increases, and the same argument holds in Case 2. The accumulation of errors explains
why in Fig. 2, for large time, “kinetic energy 1,” calculated from concentrations (without
selection) is closer to the exact values, than “kinetic energy 2” (which is computed directly
from the distribution functions). The error accumulation also explains the difference, in
Case 2, between the values of “kinetic energy 2” and “kinetic energy 1.” Here these quantities
are calculated as in Case 1 except that the random selection is also used to estimate integrals
(38). Thus, in Case 2, “kinetic energy 1” is expected to provide more accurate values than
“kinetic energy 2.”

One can easily estimate the contribution of the stochastic errors using the standard de-
viation. However, we recall that the solution of the numerical scheme for the Boltzmann
model results, after the time discretization of the model, by applying random selections
to the solutions of the discretized system of equations. Therefore, in general the standard
deviation measures only the errors of the solution of the numerical scheme with respect to
that of the discretized system.

As was argued before, the behavior of the errors introduced by the stochastic part of the nu-
merical method can be better illustrated on the case of energy. In this respect, we studied the
evolution of the standard deviation and its dependence on the number of simulations, for the
kinetic energy in Case 1 and for the total energy in Cases 1 and 2. For exemplification we
present the results for the total energy in Case 2 (other situations are similar). Figure 7 illus-
trates the typical evolution of the stochastic errors and standard deviation with 6 and 40 tests.

In the particular Cases 1 and 2, the time discretization does not introduces any error in
the computation of the total energy. Then the standard deviation also measures the total
error in the evaluation of the total energy. The data in the graphics show that errors of the
simulations are larger than the graphics scale.

The accumulation of the probabilistic errors can be also be noted in Fig. 7 by the tendency
of the standard deviation to increase with time (for a fixed number of simulations).

However, because of the convergence, there is a tendency for an increase in the number
of simulations to diminish the standard deviation. In this respect, Figs. 8 and 9 represent
the dependence of the standard deviation on the number of tests for the total energy in
Cases 1 and 2 at final timeT . For a better illustration we also represent, in the same figures,
the values of the error of the total energy for each test, as well as the dependence of the
mean error in the total energy with respect to the number of tests. It also appears that the
data presented in Figs. 2 and 4 (provided by a series of six simulations) correspond to a
bigger error zone, and a reasonable increase of the number of simulations can diminish
considerably the stochastic errors.

Therefore, by the convergence of the method, for a sufficiently large number of simula-
tions the mean values of the calculated macroscopic quantities tend to stabilize at a value
essentially determined by the time step of the discretization.
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FIG. 7. Errors of total energy in Case 2 along 44 iteration steps.

On the other hand, it is known (Proposition 4 in [7]) that, in the absence of selections,
the errors due to discretization can be improved by decreasing the time step. However, in
the case of random selection (for a fixed number of concentration points), a decrease in
time step does not necessarily result in a decrease of errors. This is because when the time

FIG. 8. Errors of total energy in Case 1 after 88 iteration steps.



BOLTZMANN-LIKE MODELS WITH CHEMICAL REACTIONS 243

FIG. 9. Errors of total energy in Case 2 after 88 iteration steps.

step is diminished the number of iterations (implicitly that of selections) increases, which
leads, in general, to the accumulation of selection errors. Indeed, for a given number of
concentration points, an iteration time step that is too small may result in more inaccurate
estimations than those obtained for a larger time step. This fact was confirmed by tests on
nonreactive models in [13]. In Table I,1Eint and1Ecin at t = 1 in Case 1 represent the
differences between the numerical and exact values (Eint = −8.589, Ecin = 8.779) of the
internal and kinetic energy, respectively, for different iteration stepsp. Here, the kinetic
energy was computed as the arithmetic mean of the values obtained fromm= 30 tests. Note
that for the internal energy (which in Case 1 is not affected by random selections) the errors
are always improved by diminishing the time step. This is not the case for kinetic energy.
At 160 time steps, to improve the error, one has to increase the number of concentration
points for the measures associated to the one-particle distribution functions.

The tests also showed that one can still obtain satisfactory results using less concentration
points and a larger time step. For example, in Case 1, consider the following values of
parameters: (a) 45,000 concentration points and 88 iteration steps (the situation presented
in Figs. 1 and 2); (b) 4,500 concentration points and 44 iteration steps. Calculating the
maximal error for the kinetic energyδEa

cin andδEb
cin for the situations (a) and (b) respectively,

TABLE I

Errors of Energies for Different Iteration Steps

p 5 10 20 40 80 160

1Eint −0.615 −0.290 −0.141 −0.070 −0.035 −0.017
1Ecin 0.628 0.292 0.155 0.063 0.020 0.059



244 MARINESCU, ESPESSET, AND GR̈UNFELD

we obtained the ratioδEa
cin/δEb

cin = 0.4644. Similarly, for the internal energy,δEa
int/δEb

int =
0.4604.

The above remarks also make clear that the accuracy of the numerical scheme requires a
proper correlation between the decrease of the time step1t and the increase in the number
n of concentration points of the measures in (45). This fact can be somehow understood
from the following considerations, which, although developed for the model presented in
Section 2, can be extended to the general case examined in [7].

Let µ andν be measures of the form (48) and (50) respectively. For some continuous
real-valued functionφ onR3 defineφ̄ := ∫R3 φ dµ. Then, the mean erroresφ(ν, µ) of the
approximation ofφ̄ by

∫
R3 φ dν can be evaluated by

eφ(ν, µ) :=
〈∣∣∣∣ ∫

R3
φ dν −

∫
R3
φ dµ

∣∣∣∣〉, (54)

where〈 〉 designates the mean with respect to the probability of selectionP. First, observe
that under the conditionφ2 ≤ ∞, one finds

eφ(ν, µ) ≤ 1√
n

[
(φ2− φ̄2

)
1
2 + 1

2
· |φ̄|

]
. (55)

To obtain (55) one applies the Cauchy inequality to the right-hand side of (54), and then
one estimates the resulting expression using the definition ofP and the independence of
the random variables (49).

Then, for 1≤ p,q ≤ J = [[T/1t ]], define

Eφ(ν p,J, νq,J) := max
1≤i≤N

(
dφ
(
ν

p,J
i , ν

q,J
i

))
, (56)

with ν p,J
i as in (47).

Using the properties of collision operators and the estimation (55) in (47), and comparing
the iterations on linesp− 1 and p, it follows that there exist some constantsc1 andc2

(depending onφ, initial data and the parameters of the collision operators in (5)) such that

Eφ(ν p,J, ν p−1,J) ≤ c1√
n
(1+ c21t)J−p. (57)

Then,

Eφ(ν J,J, ν0,J) ≤
J∑

p=1

Dφ(ν p,J, ν p−1,J) ≤ cT

1t
√

n
, (58)

wherec depends on the same parameters asc1 andc2 andT is the final time.
Combining (58) with the estimated contribution of the error due to the time discretiza-

tion (Proposition 4 of [7]), one obtains an upper bound on the total mean errorEtot, φ at
momentT ,

Etot, φ ≤ δn,T,1t,φ + K T

(
1t + 1

1t · √n

)
, (59)
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where the constantK depends on the same parameters asc, while

δn,T,1t,φ := ∣∣(φ, ν0,J
i

)− (φ, ν J
i

)∣∣ (60)

represents the contribution of the error introduced by the approximation of the initial data.
Here ν J

i and ν0,J
i are the solutions of the discretized equations (44) for the exact and

approximated initial dataν0
i andν0,0

i , respectively.
Obviouslyδn,T,1t,φ depends onn, T , and1t throughν J

i andν0,J
i and its behavior depends

on the way one approximates the initial data. If one applies low-discrepancy methods, it
is known [7] thatδn,T,1t,φ→ 0 asn→∞ and1t→ 0. However, an explicit estimation on
the rapidity of convergence is missing for general models.

Nevertheless, due to the space isotropy of the present model, one can also provide an
upper bound for (60). In this respect, we can adapt an argument for the simple gas [10], by
comparing (in terms of discrepancy)ν p

i andν0,p
i , resulting afterp iteration steps from (44),

with starting measuresν0
i andν0,0

i , respectively.
To this end, first observe that, without loss of generality, we can consider (59) with

φ = φ(v) depending only on the radial component of velocity. In the following, we assume
thatφ has bounded variation.

Further, define

D(ν0,p, ν p) := max
1≤i≤N

(
D
(
ν

0,p
i , ν

p
i

))
, (61)

whereD(ν0,p
i , ν

p
i ) is the discrepancy (46) of measuresν0,p

i andν p
i . Then observe that (44)

implies

∣∣(φr , ν
0,p+1
i

)− (φr , ν
p+1
i

)∣∣
≤ ∣∣(φr , ν

p
i

)− (φr , ν
p
i

)∣∣+1t
4∑

j,k,l=1

λi j ,kl

∣∣∣∣ ∫
Di j ,kl

φ(v) dν0,p
i (v) dν0,p

j (w) dζ dη

−
∫
Di j ,kl

φ(v) dν p
i (v) dν p

j (w) dζ dη

∣∣∣∣+1t
4∑

j,k,l=1

λkl,i j

∣∣∣∣ ∫
Dkl,i j

φr (ṽkl,i j ) dν0,p
k (v)

× dν0,p
l (w) dζ dη −

∫
Dkl,i j

φr (ṽkl,i j ) dν p
k (v) dν p

l (w) dζ dη

∣∣∣∣, (62)

with φr the characteristic function of interval [0, r ] and ṽkl,i j given by (28).
Obviously, the first term, and each modulus in the first sum on the right-hand side of

(62) are smaller thanD(ν0,p, ν p). To see that the moduli in the last sum of (62) are
also smaller thanD(ν0,p, ν p), it is sufficient to remark, in our case, that the applica-
tions of the formv→ φr (ṽkl,i j (v,w, ζ, η)) are characteristic functions of a finite union of
intervals.

Therefore, from (62) one has

D(ν0,p, ν p) ≤ (1+ c01t) ·D(ν0,p−1, ν p−1), (63)
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with c0 some constant depending on the same parameters asc1 andc2. Then by iterating
(63) one finds easily

D(ν0,J, ν J) ≤ CT
0 ·D(ν0,0, ν0), (64)

with C0 a constant depending onc0.
Now, applying the Koksma–Hlavka inequality [9] to (60), and using (64) and the fact

thatD(ν0,0, ν0) = O( (logn)s

n ) for somes> 0 [9], one finally obtains

Etot, φ ≤ K T
0
(logn)s

n
+ K T

(
1t + 1

1t
√

n

)
, (65)

where K0 also depends on the same parameters asc1 andc2. The estimations (59) and
(65) give some indication how to correlate the choice of the time step with the number of
concentration points to control the error, for a given duration of the numerical experiment.
An unpleasant feature is the presence of the time step in the denominators of (59) and (65)
as a consequence of the accumulation of the errors introduced by selections. This behavior
is reflected to some extent by numerical results.

The bounds (59) are not optimal. However, they show that (in the limits of the estimations
(59)) the qualitative behavior of the errors is the same, irrespective of the presence of reaction
processes in fluids. Nevertheless, the contribution of the Boltzmann terms corresponding
to reactions is retained in the rather complicated expressions providing the values of the
constants of (58) and (59).

5. CONCLUDING REMARKS

In this paper we presented the implementation of a convergent numerical scheme of the
nonlinear Boltzmann model for reacting fluids, where one solves time-discretized equations
and the numerical solutions are obtained by iterations alternating with random selections.

The method was applied to a particular space-homogeneous model with binary reactions,
for which one can calculate exactly certain macroscopic quantities. The computational effort
was O(n), the same as in applications on Boltzmann models for nonreacting multicom-
ponent fluids with elastic Maxwellian collisions [13]. The numerical results indicate good
agreement between the computed and exact values of the compared quantities. In particular,
the bulk conservation relations are satisfied, on average, in the limit of the numerical errors.
Here, it is worth mentioning that, as conjectured in [7], the scheme for reacting fluids does not
exhibit (at least numerically) the systematic freezing [4] of the NBI method for a simple gas.

Implementating the scheme for models of reacting gases is more difficult than when
modeling simple fluids. Indeed, the integral collision operators involving reaction thresholds
are more difficult to evaluate than those corresponding to nonreactive processes, because of
the domain integration restrictions in the velocity variables imposed by the energy balance.

Comparing our numerical results with those obtained for a simple gas [13], one can
observe the same general behavior of errors. Although not optimal, the upper bound es-
timations (59) and (65) explain, to some extent, the behavior of different type of errors.
Essentially the same dependence on1t as in the second (expression) term of (65) was
obtained using sharp estimations on errors in [10], where a low-discrepancy algorithm was
applied to the Krook–Wu version of the classical Boltzmann equation for a monatomic gas.
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The error analysis also provides information on the needed correlation between the
parameters of the scheme to improve the accuracy of the results.

We recall that the numerical method of [7] can be applied to more general models, with
nonconstant collision kernels, with the computational effort being (at most)O(n logn).
Unfortunately, in those situations, it is difficult to find exact solutions. Then the tests should
be rather limited to comparing the data provided by the numerical scheme with those
obtained from some relevant experiments.

The time discretization applied in this paper is a first-order Euler method. However
higher order methods should improve the precision, without increasing the computational
effort of the numerical scheme. This could be useful in further computations extending the
method to space-dependent problems, by space discretization and application of the space-
homogeneous scheme in each space-discretized cell. In this respect, the results of the present
paper should be considered as a necessary phase in understanding the simulation in such a
space cell. In addition, since the dominant contribution to errors is due to nonlinearities, then
we expect (under suitable boundary conditions) that controlling the errors of the simulation
in a cell, one could obtain information on the errors of the simulation in the whole domain
of space. More specifically, the errors produced by space discretization should behave like
those introduced by time discretization, as happens in the NBI scheme for nonhomogeneous
monatomic fluids [1]. Moreover, the errors from stochastic selections should accumulate as
in the space homogeneous case analyzed in the present paper.

For the same considerations as in Section 3, the weighted selection applied in our numer-
ical experiment could prove its effectiveness in handling space-dependent problems, where
one deals with a considerable number of cells, with different concentrations.

Finally observe that directly solving Boltzmann equations by particle methods is useful in
describing kinetic low-density regimes. However, this may become extremely expensive in
the continuous fluid dynamic limit, where efficient reactive BGK models [11] are more ade-
quate (indeed they skillfully utilize the information that the distribution functions approach
local Maxwellians when the mean free path goes to zero). Under these circumstances, for
a reacting fluid with various regimes, one could apply a particle method strategy as devel-
oped for the simple gas [15], e.g., solving the reactive BGK model when (and where) this
is adequate and coupling the solutions to those of the nonlinear Boltzmann model solved in
the so-called nonlinear Boltzmann regions [15]. Then an ultimate goal would be to obtain
a fluid code able to establish and apply automatically the suitable model, function of the
considered space region, and moment of evolution.
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